1. Tujuan [back]
- Mengetahui fungsi dari astable multivibrator
- Mengetahui bentuk rangkaian astable multivibrator dengan D=50%
- Mengetahui berbagai komponen elektronika yang dipakai dalam pembuatan rangkaian
GAMBAR OSILOSKOP
Osiloskop adalah alat ukur elektronika yang berfungsi memproyeksikan bentuk sinyal listrik. Osiloskop dilengkapi dengan tabung sinar katode. Peranti pemancar elektron memproyeksikan sorotan elektron ke layar tabung sinar katode.
Generator
a. Power Supply
Bahan
1. Resistor
Resistor merupakan salah satu komponen elektronika pasif yang berfungsi untuk membatasi arus yang mengalir pada suatu rangkaian dan berfungsi sebagai terminal antara dua komponen elektronika.Tegangan pada suatu resistor sebanding dengan arus yang melewatinya (V=IR).
2. OP-AMP
Karakteristik Faktor Penguat atau Gain pada Op-Amp pada umumnya ditentukan oleh Resistor Eksternal yang terhubung diantara Output dan Input pembalik (Inverting Input). Konfigurasi dengan umpan balik negatif (Negative Feedback) ini biasanya disebut dengan Closed-Loop configuration atau Konfigurasi Lingkar Tertutup. Umpan balik negatif ini akan menyebabkan penguatan atau gain menjadi berkurang dan menghasilkan penguatan yang dapat diukur serta dapat dikendalikan. Tujuan pengurangan Gain dari Op-Amp ini adalah untuk menghindari terjadinya Noise yang berlebihan dan juga untuk menghindari respon yang tidak diinginkan. Sedangkan pada Konfigurasi Lingkar Terbuka atau Open-Loop Configuration, besar penguatannya adalah tak terhingga (∞) sehingga besarnya tegangan output hampir atau mendekati tegangan Vcc.
3. Kapasitor
Kapasitor berfungsi sebagai penyaring atau filter dalam sebuah rangkaian power supply (catu daya). Fungsi kapasitor sebagai pembangkit frekuensi pada alat osilator. Kapasitor berfungsi untuk menyimpan tegangan dan kuat arus pada periode tertentu. Pada rangkaian antena, fungsi kapasitor adalah sebagai frekuensi.
4. Ground
Ground pada peralatan kelistrikan dan elektronika adalah memberikan perlindungan ke seluruh sistem serta menetralisir cacat yang disebabkan daya yang kurang baik atau kualitas komponen yang tidak standar.
Resistor merupakan salah satu komponen elektronika pasif yang berfungsi untuk membatasi arus yang mengalir pada suatu rangkaian dan berfungsi sebagai terminal antara dua komponen elektronika.Tegangan pada suatu resistor sebanding dengan arus yang melewatinya (V=IR).
Karakteristik Faktor Penguat atau Gain pada Op-Amp pada umumnya ditentukan oleh Resistor Eksternal yang terhubung diantara Output dan Input pembalik (Inverting Input). Konfigurasi dengan umpan balik negatif (Negative Feedback) ini biasanya disebut dengan Closed-Loop configuration atau Konfigurasi Lingkar Tertutup. Umpan balik negatif ini akan menyebabkan penguatan atau gain menjadi berkurang dan menghasilkan penguatan yang dapat diukur serta dapat dikendalikan. Tujuan pengurangan Gain dari Op-Amp ini adalah untuk menghindari terjadinya Noise yang berlebihan dan juga untuk menghindari respon yang tidak diinginkan. Sedangkan pada Konfigurasi Lingkar Terbuka atau Open-Loop Configuration, besar penguatannya adalah tak terhingga (∞) sehingga besarnya tegangan output hampir atau mendekati tegangan Vcc.
3. Kapasitor
- Pengisian kapasitor
GAMBAR . RESISTOR
Resistor merupakan salah satu komponen elektronika pasif yang berfungsi untuk membatasi arus yang mengalir pada suatu rangkaian dan berfungsi sebagai terminal antara dua komponen elektronika.Tegangan pada suatu resistor sebanding dengan arus yang melewatinya (V=IR).Cara menghitung nilai resistor dapat dilihat pada gambar2 dan gambar 3.
GAMBAR 2. WARNA GELANG RESISTOR
GAMBAR 3. CARA PENGHITUNGAN BESAR RESISTANSI RESISTOR
LANGKAH-LANGKAH :
· MASUKKAN ANGKA LANGSUNG DARI KODE WARNA GELANG KE-1 (PERTAMA)
· MASUKKAN ANGKA LANGSUNG DARI KODE WARNA GELANG KE-2
· MASUKKAN JUMLAH NOL DARI KODE WARNA GELANG KE-3 ATAU PANGKATKAN ANGKA TERSEBUT DENGAN 10 (10N)
· MERUPAKAN TOLERANSI DARI NILAI RESISTOR TERSEBUT
CONTOH :
GELANG KE 1 : COKLAT = 1
GELANG KE 2 : HITAM = 0
GELANG KE 3 : HIJAU = 5 NOL DIBELAKANG ANGKA GELANG KE-2; ATAU KALIKAN 105
GELANG KE 4 : PERAK = TOLERANSI 10%
· MAKA NILAI RESISTOR TERSEBUT ADALAH 10 * 105 = 1.000.000 OHM ATAU 1 MOHM DENGAN TOLERANSI 10%.
C. Op-Amp
Op-Amp memiliki beberapa karakteristik, diantaranya:
a. Penguat tegangan tak berhingga (AV = ∼)
b. Impedansi input tak berhingga (rin = ∼)
c. Impedansi output nol (ro = 0) d. Bandwidth tak berhingga (BW = ∼)
d. Tegangan offset nol pada tegangan input (Eo = 0 untuk Ein = 0)
Amplifier Operasional:
Penguat Pembalik:
Istilah berikut digunakan dalam rumus dan persamaan untuk Penguatan Operasional.
· R f = Resistor umpan balik
· R in = Resistor Masukan
· V in = Tegangan masukan
· V keluar = Tegangan keluaran
· Av = Penguatan Tegangan
Penguatan tegangan:
Gain loop dekat dari penguat pembalik diberikan oleh;
Tegangan Keluaran:
Tegangan keluaran tidak sefasa dengan tegangan masukan sehingga dikenal sebagai penguat pembalik .
Penguat Penjumlahan:
Tegangan Keluaran:
Output umum dari rangkaian yang diberikan di atas adalah;
Jumlah Tegangan Input Amplifikasi Terbalik:
jika resistor inputnya sama, outputnya adalah jumlah tegangan input yang diskalakan terbalik,
Jika R 1 = R 2 = R 3 = R n = R
Output yang Dijumlahkan:
Ketika semua resistor dalam rangkaian di atas sama, outputnya adalah jumlah terbalik dari tegangan input.
Jika R f = R 1 = R 2 = R 3 = R n = R;
V keluar = – (V 1 + V 2 + V 3 +… + V n )
Penguat Non-Pembalik:
Istilah yang digunakan untuk rumus dan persamaan Penguat Non-Pembalik.
· R f = Resistor umpan balik
· R = Resistor Tanah
· V masuk = Tegangan masukan
· V keluar = Tegangan keluaran
· Av = Penguatan Tegangan
Keuntungan Penguat:
Gain total penguat non-pembalik adalah;
Tegangan Keluaran:
Tegangan output penguat non-pembalik sefasa dengan tegangan inputnya dan diberikan oleh;
Unity Gain Amplifier / Buffer / Pengikut Tegangan:
Jika resistor umpan balik dilepas yaitu R f = 0, penguat non-pembalik akan menjadi pengikut / penyangga tegangan
Penguat Diferensial:
Istilah yang digunakan untuk rumus Penguat Diferensial.
· R f = Resistor umpan balik
· R a = Resistor Input Pembalik
· R b = Resistor Input Non Pembalik
· R g = Resistor Ground Non Pembalik
· V a = Tegangan input pembalik
· V b = Tegangan Input Non Pembalik
· V keluar = Tegangan keluaran
· Av = Penguatan Tegangan
Keluaran Umum:
tegangan keluaran dari rangkaian yang diberikan di atas adalah;
Keluaran Diferensial Berskala:
Jika resistor R f = R g & R a = R b , maka output akan diskalakan perbedaan dari tegangan input;
Perbedaan Penguatan Persatuan:
Jika semua resistor yang digunakan dalam rangkaian adalah sama yaitu R a = R b = R f = R g = R, penguat akan memberikan output yang merupakan selisih tegangan input;
V keluar = V b – V a
Penguat Pembeda
Penguat Operasional jenis ini memberikan tegangan output yang berbanding lurus dengan perubahan tegangan input. Tegangan keluaran diberikan oleh;
Input gelombang segitiga => Output gelombang persegi panjang
Input gelombang sinus => Output gelombang kosinus
Penguat Integrator
Penguat ini memberikan tegangan keluaran yang merupakan bagian integral dari tegangan masukan.
D. Kapasitor
Gambar Simbol Kapasitor
Setiap perangkat elektronika memiliki simbol sebagai lambang. Demikian pula dengan rangkaian kapasitor. Pada simbol kapasitor dibuat dengan tampilan yang nyaris sama.
Namun terdapat pula perbedaan yang terletak pada beberapa titik yang bertujuan untuk membedakan jenisnya.
Simbol kapasitor dibedakan menjadi dua, yaitu:
- Simbol kapasitor standar Eropa.
- Simbol kapasitor standar Amerika.
Anda dapat melihat contoh simbol-simbol kapasitor seperti dibawah ini:
Dari gambar diatas dapat disimpulkan bahwa simbol kapasitor standar Eropa dilambangkan dengan dua segi empat yang dibuat sejajar. Sedangkan untuk simbol kapasitor standar Amerika, mereka menggunakan dua garis yang disejajarkan secara vertikal. Secara sekilas, simbol kapasitor dari kedua jenis diatas terlihat mirip. Perbedaannya hanya terletak pada beberapa bagian. Berikut ini penjabarannya.
- Adanya kutub positif untuk kapasitor bipolar.
- Perbedaan letak ujung panah untuk kapasitor variabel (trimmer).
- Terdapat perbedaan bentuk fisik dan cara mengubah kapasitas pada kapasitor trimmer dengan varco biasa.
Macam-Macam Rangkaian Kapasitor
Untuk mendapatkan nilai tertentu pada kapasitor, hal tersebut bisa didapatkan dengan cara merangkai beberapa buah kapasitor sesuai kebutuhan.
Rangkaian untuk kapasitor pada umumnya sama dengan rangkaian listrik yang dapat dibedakan menjadi tiga, yakni rangkaian kapasitor seri, paralel dan juga gabungan. Simak penjelasannya berikut ini:
1. Rangkaian Kapasitor Seri
Rangkaian kapasitor seri merupakan rangkaian yang dibuat dengan cara menyambungkan kaki-kaki kapasitor dalam satu garis lurus. Pada rangkaian seri, ketika Anda ingin mencari hambatan. Maka hambatan totalnya cukup dijumlahkan saja.
Untuk mendapatkan hasil penghitungannya, Anda dapat menggunakan rumus kapasitor seri, yakni adalah:
2. Rangkaian Kapasitor Paralel
Rangkaian kapasitor paralel merupakan rangkaian yang terdiri dari 2 buah atau lebih kapasitor yang disusun dengan bentuk paralel atau berderet.
Untuk jenis kapasitor paralel, susunan rangkaian paralel dapat Anda lihat pada gambar berikut ini:
Untuk penghitungan nilai kapasitas rangkaian paralel pada kapasitor, Anda dapat menggunakan rumus kapasitor paralel, yaitu:
3. Kapasitor Gabungan
Rangkaian gabungan merupakan rangkaian kapasitor yang terdiri dari perpaduan antara seri dan paralel.
Untuk menghitung nilai kapasitas dari rangkaian gabungan, Anda dapat menghitung dengan menggunakan rumus kapasitor gabungan di atas, yakni dengan menghitung masing-masing rangkaian, antara seri dan paralel kemudian menjumlahkannya.
A. Prosedur Percobaan
- Untuk membuat rangkaian ini, pertama, siapkan semua alat dan bahan yang bersangkutan, di ambil dari library proteus
- Letakkan semua alat dan bahan sesuai dengan posisi dimana alat dan bahan terletak.
- Tepatkan posisi letak nya dengan gambar rangkaian
- Selanjutnya, hubungkan semua alat dan bahan menjadi suatu rangkaian yang utuh
- Lalu mencoba menjalankan rangkaian , jika tidak terjadi error, maka motor akan bergerak yang berarti rangkaian bekerja
B. Rangkaian
1. Rangkaian astable multivibrator dengan Duty cell = 50%
2. Tampilan gelombang rangkaian astable multivibrator D = 50% pada osiloskop
1. Rangkaian astable multivibrator dengan Duty cell = 50%
C. Prinsip kerja
D. Video [back]
0 comments:
Posting Komentar